点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:welcome购彩大厅网址-welcome购彩大厅客户端
首页>文化频道>要闻>正文

welcome购彩大厅网址-welcome购彩大厅客户端

来源:welcome购彩大厅必赚方案2024-05-28 17:48

  

welcome购彩大厅网址

健全全面从严治党体系——论学习贯彻习近平总书记二十届中央纪委二次全会重要讲话精神******

  “构建全面从严治党体系是一项具有全局性、开创性的工作。”在二十届中央纪委二次全会上,习近平总书记深刻总结新时代十年我们党初步构建起全面从严治党体系,深刻阐述健全全面从严治党体系的目标任务、实践要求,对推动新时代党的建设新的伟大工程向纵深发展具有重大指导意义。

  全面从严治党是新时代党的自我革命的伟大实践,是新时代党的建设的鲜明主题。党的十八大以来,以习近平同志为核心的党中央不断深化对自我革命规律的认识,不断推进党的建设理论创新、实践创新、制度创新,初步构建起全面从严治党体系。十年来,以党的政治建设为统领,坚持党中央集中统一领导是最高政治原则,持续提高各级党组织和党员干部政治判断力、政治领悟力、政治执行力;把思想建设作为党的基础性建设,坚持不懈用习近平新时代中国特色社会主义思想凝心铸魂;坚持新时代党的组织路线,增强党组织政治功能和组织力凝聚力;坚决落实中央八项规定精神,以钉钉子精神纠四风树新风;把纪律建设纳入党的建设总体布局,坚持纪严于法、纪在法前;把制度建设贯穿到党的各项建设之中,不断提高党的建设科学化、制度化、规范化水平;坚持以雷霆之势反腐惩恶,反腐败斗争取得压倒性胜利并全面巩固。2022年,中央纪委国家监委和国家统计局合作开展的民意调查结果显示,97.4%的群众认为全面从严治党卓有成效,比2012年提高了22.4%,99%的群众认为党中央正风肃纪反腐的举措体现了我们党彻底的自我革命精神。

  党的二十大报告提出“健全全面从严治党体系”,这是加强新时代党的建设的重大举措。必须深刻认识到,全面从严治党永远在路上,党的自我革命永远在路上。我们党作为长期执政的马克思主义政党,党的远大目标和历史使命,党的队伍的庞大规模和广泛分布,党面临的重大风险和严峻挑战,都要求必须健全全面从严治党体系,把党建设得更加坚强有力。只有整体地而不是局部地、系统地而不是零碎地、持久地而不是短暂地、高标准地而不是一般化地全面从严治党,全面推进党的自我净化、自我完善、自我革新、自我提高,才能使我们党坚守初心使命,始终成为中国特色社会主义事业的坚强领导核心。

  习近平总书记强调:“全面从严治党体系应是一个内涵丰富、功能完备、科学规范、运行高效的动态系统。”健全全面从严治党体系,需要坚持制度治党、依规治党,更加突出党的各方面建设有机衔接、联动集成、协同协调,更加突出体制机制的健全完善和法规制度的科学有效,更加突出运用治理的理念、系统的观念、辩证的思维管党治党建设党。要坚持内容上全涵盖,党的建设推进到哪里,全面从严治党体系就要构建到哪里,把全面从严治党贯穿于党的建设各方面;要坚持对象上全覆盖,从严抓好领导干部队伍、党员队伍、各级党组织建设,重点是抓好“关键少数”;要坚持责任上全链条,压实各级党委(党组)全面从严治党主体责任,增强管党治党意识、落实管党治党责任;要坚持制度上全贯通,用制度促进全面从严治党体系贯通联动,真正实现制度治党、依规治党。只有进一步健全全面从严治党体系,使全面从严治党各项工作更好体现时代性、把握规律性、富于创造性,才能把全面从严治党引向深入,做到管党有方、治党有力、建党有效。

  全面建设社会主义现代化国家、全面推进中华民族伟大复兴,关键在党。全面从严治党是党永葆生机活力、走好新的赶考之路的必由之路。新征程上,我们不知还要爬多少坡、过多少坎、经历多少风风雨雨、克服多少艰难险阻。永远保持赶考的清醒和谨慎,驰而不息推进全面从严治党,不断健全全面从严治党体系,把党的伟大自我革命进行到底,以党的自我革命引领社会革命,我们就一定能向历史和人民交出新的优异答卷、创造新的更大奇迹。(人民日报评论员)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • [征集]春色满园 美景常在

  • 镜中多奇境依旧爱丽丝

独家策划

推荐阅读
welcome购彩大厅注册网闪电豹闪电豹和同伴们的探险记闪电豹和同伴们的探险记
2024-01-30
welcome购彩大厅手机版特朗普打了这个电话后 国际油价“闪崩”
2024-08-03
welcome购彩大厅计划群丈夫张丹峰风波后洪欣首现身 全程带笑
2024-03-12
welcome购彩大厅玩法《魔卡少女樱 CLEAR CARD篇》木之本樱开订
2024-10-04
welcome购彩大厅攻略杨祐宁大爆料 苏明玉这样的女生对他有吸引力
2024-07-30
welcome购彩大厅赔率越优秀的男人越不爱做这3件事
2024-02-22
welcome购彩大厅投注首度披露!重庆公安局原局长何挺下属已被双开
2024-04-13
welcome购彩大厅app下载AI修复后的王祖贤林青霞美到让人惊叹
2024-09-04
welcome购彩大厅注册 偏偏这一刻,我扛不住了!
2024-01-03
welcome购彩大厅手机版APP 美国小黑喵先天性小脑发育不全 走路摇晃仿佛醉酒
2024-01-05
welcome购彩大厅登录6路信号想看什么全都有!大师赛第三轮直播回放合集
2024-01-15
welcome购彩大厅登录气温罕见骤降 芝加哥四月降雪
2024-04-15
welcome购彩大厅APP 吉林古风校花飘逸动人
2024-07-04
welcome购彩大厅充值 055舷号大有讲究!从17吨黄金天价买入到38...
2024-08-04
welcome购彩大厅官方想get美剧同款?《权游》城堡的现实版还真能买到
2024-07-09
welcome购彩大厅技巧第五套人民币发布 5毛变银色
2023-12-06
welcome购彩大厅官网平台孩子说脏话咋办?试试这么做
2024-02-17
welcome购彩大厅规则美阿帕奇直升机服役33年仍居榜首 中国武直差在哪
2024-07-07
welcome购彩大厅计划一个很有本事的人:曹操
2024-08-04
welcome购彩大厅软件 隋炀帝为什么宁可困死江都也不回关陇贵族的老巢?
2024-07-29
welcome购彩大厅官方网站新华全媒+丨世界湿地日:如果湿地“精灵”会说话
2024-07-09
welcome购彩大厅代理世界最大跨度无砟轨道高铁桥在皖合龙
2024-06-14
welcome购彩大厅娱乐刀塔自走棋更新英雄戴泽
2024-05-26
welcome购彩大厅客户端下载 乒联世界排名马龙重返前五 丁宁樊振东仍然领跑
2024-04-27
加载更多
welcome购彩大厅地图